US006564377B1

a2 United States Patent

Jayasimha et al.

US 6,564,377 Bl
May 13, 2003

(10) Patent No.:
@5) Date of Patent:

(54) SELF-DESCRIBING COMPONENTS WITHIN
A SOFTWARE CATALOG
(75) Inventors: Varsha Jayasimha, Redmond, WA
(US); Markus Horstmann, Redmond,
WA (US)
(73) Assignee: Microsoft Corporation, Redmond, WA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/361,497
(22) Filed: Jul. 26, 1999
(51) Int. CL7 oo GO6F 9/445
(52) US. Clh oo 717/174
(58) Field of Searchc...c........ 717/11, 174-178;
707/100-103 R, 203
(56) References Cited
U.S. PATENT DOCUMENTS
5485617 A 1/1996 Stutz et al.
5,517,645 A 5/1996 Stutz et al.
5,602,993 A * 2/1997 Stormberg 717/11
5,706,505 A 1/1998 Fraley et al.
5,794,038 A 81998 Stutz et al.
5,890,161 A * 3/1999 Helland et al. 707/103
5,911,068 A 6/1999 Zimmerman et al.
5,933,646 A * 8/1999 Hendrickson et al. 717/11
5,970,490 A * 10/1999 Morgenstern 707/10
6,018,725 A * 1/2000 Boucher et al. 717/11
6,144960 A * 11/2000 Okada et al. 707/10
6,151,707 A * 11/2000 Hecksel et al. 717/11
6,167,567 A * 12/2000 Chiles et al. 717/11

OTHER PUBLICATIONS

Simon. Building Component Software with COM and Eiffel.
Microsoft Corp. 1992-1995. pp. 364-374.*

Nicoloudis e al. Implementing Trading Object Services in
COM. IEEE. 2000. pp. 230-239.*

Install Operation calls
Registar Moduls to Install
DLL

ono o moro

Wang et al. Customization of Distributed Systems Using
COM. IEEE. 1998. pp. 8-12.*

Chappell, D., “COM+ The Future of Microsoft’s Compo-
nent Object Model”, Distributed Computing Monitor, vol.
13, No. X, pp. 3-17(1998).

“Components”, Inside Com, Chapter 1, pp. 1-13 (Date and
Author Unknown).

“HRESULTs, GUIDs, the Registry, and Other Details”,
Inside Com, Chapter 6, pp. 116-126 (Date and Author
Unknown).

* cited by examiner

Primary Examiner—Gregory Morse
Assistant Examiner—Wei Zhen
(74) Attorney, Agent, or Firm—Merchant & Gould P.C.

(7) ABSTRACT

A method for installing and registering a COM component
objects within a registration datastore of a computing sys-
tem. The method comprising checking the COM component
object to determine whether it contains a set of self-
describing data, and if the COM component contains the set
of self-describing data, perform a sequence of operations.
These operations begin by extracting the self-describing data
from the COM component. Next the operations register the
COM component using the extracted self-describing data by
storing registration data within the registration datastore.
Finally the operations end after deriving additional registra-
tion data using the extracted self-describing data and storing
the additional registration data within the registration datas-
tore. The self-describing COM component comprises a first
data field containing data representing a dynamic link
library. A second data field derived from the first data field
comprising a reserve word module. A third data field derived
from the second data field comprising one or more self-
describing component data elements. A fourth data field
functioning to indicate the end of the self-describing COM
component object, wherein the one or more self-describing
component data elements are extracted by the system reg-
istrar module to generate data stored within the registration
datastore.

19 Claims, 6 Drawing Sheets

US 6,564,377 B1

Sheet 1 of 6

May 13, 2003

U.S. Patent

JEYNEETS

UOoNB)SHIOAA

U.S. Patent May 13, 2003 Sheet 2 of 6 US 6,564,377 B1

FIG. 2

200

YZOG

, 1
— - Client i
| Administration Tool | Computer Clieht
204 Application
226
CS DT | % '
250 y
Y Administration v]_208
Application | [202 Tool Apslcﬁi;";ifo;
4 252 =, \ 4
Runtime Runtime
228X Catalog Catalog

2309 210
cs N cs ['\ -'L 1
LT
: : JX(\
e LT | 218 —\l
238 LT 222 | -
| oo 1\ :
pT || ot || or

DT DT DT I| DT
- = é = é
Computer 242 212 Server 214
216 j

U.S. Patent May 13, 2003 Sheet 3 of 6 US 6,564,377 B1

FIG. 3

=3 COMPUTER 300

| TN
OPTICAL MONITOR |
DISK 319 | E
“*«.a.mmmwmw’}

306 o

REMOTE
COMPUTER

MEMORY 304

ROM

tEe; ARA D g
5 RAM 310

FROGRAM
MODULE 33

REMOVABLE
STORAGE
316

RASINIR A
MODERM

364

Mouse
336

U.S. Patent May 13, 2003 Sheet 4 of 6 US 6,564,377 B1

/—- 300
461
Run-Time Process Modules /
Application Instali
DLL DLL Module

\
L (S \— 482

462
471
L[| 472 463
RegDB Run- | /

) Registrar
Time Catalo
Module ? Module
I [— 474
Data Table Data Table
Object Object

475 A

473

RegDB File
System Module

U.S. Patent May 13, 2003 Sheet 5 of 6 US 6,564,377 B1

FIG. 5

512

b

Entry Points DLL

513 — 501

Executable Code

Pre-defined Data Modules| / 514

\fsm

/f 502
L/ 504 TLB
503
Reserve
Word /
Module

520 4 cLB

Self Describing
Data

U.S. Patent May 13, 2003 Sheet 6 of 6 US 6,564,377 B1

601 \| Install Operation calls
Registrar Module to Install
one or more DLL

FIG.6

yas 603

DLL Install Operation
calls DiIRegisterServer
entry pointin DLL to
Install DLL within Registry

heck Operation
Determines
Whether DLL is

Self-Describing?

602

Yes

¥

TLB Operation Extracts

604 ——| TLB data from DLL and

Registers TLB information
into Registry

Test Operation
Determines
Whether DLL is
Self-Describing?

605

Yes

4

Read Operation
Cracks Open DLL and
606 ——] Read Configuration Data

Using ImetaDatalmport
Interface using data table
object

v

Write Operation writes
Configuration Data
607 —\ to RegDB Data Store

Using a Data Table
Structure and
IST_SimpleTable
Interface

I

608 Derive Operation . 609

‘\ generates Implementation /

Specific Information and »{ End

Stores Information within
RegDB Data Store

US 6,564,377 B1

1

SELF-DESCRIBING COMPONENTS WITHIN
A SOFTWARE CATALOG

TECHNICAL FIELD

This invention relates in general to a method and appa-
ratus for providing system registration information installed
within a software catalog of a computing system, and more
particularly to a method and apparatus for providing system
registration information directly from the component object
that is installed within the software catalog of a computing
system.

BACKGROUND OF THE INVENTION

Prior to this invention, COM objects were installed into a
system by requiring the object developer to modify the
system registry to place the registration information within
it. By placing the registration information in the registry, the
COM objects informed the system of their existence,
location, and properties. This software architecture required
all developers to both understand and utilize the organiza-
tion and structure of the system registry in order to install
their objects. This requirement was significant in that the
actions of one developer could adversely affect the operation
of other objects once the common registration information in
the registry was altered. Additionally, the previously imple-
mented organization and structure of the registry needed to
be maintained to ensure the operation of legacy components
within a system.

Currently, COM objects, or DLLs, are installed into a
system registry by invoking a well defined entry point called
DllRegisterServer. They are uninstalled from the system
registry by calling another well defined entry point called
DIlUnregisterserver. This process adds a layer of complexity
to the task of the developer in that he or she must understand
the organization and structure of the system registry in order
to be able to correctly modify it without affecting the
operation of other objects already installed within the system
registry. This process also adds a system legacy requirement
to the registry in that its organization and structure must be
maintained to continue to operate with existing DLLs.
Finally, the system registry is a general purpose storage area
shared by the entire system and used for many purposes.
Also, access to the registry has not been particularly opti-
mized for use at runtime The present invention addresses
each of these deficiencies.

SUMMARY

To overcome the limitations in the prior art described
above, and to overcome other limitations in the prior art that
will become apparent upon reading and understanding the
present specification, the present invention discloses a
method and apparatus—for providing system registration
information directly from the component object that is
installed within the software catalog of a computing system.

Because of a desire to eliminate problems associated with
developers having to modify the system registry as part of an
object installation process as well as a desire to make the
registry storage, location and format independent, an
improved registration process utilizes self-describing
objects to obtain the registration data. In this registration
process, data to describe the components are stored within
the component in an easily recognizable form. The regis-
tration process extracts the data from the self describing
component and installs the data within the registration

10

15

20

25

30

35

40

45

50

55

60

65

2

database. The database is presented to the installing process
in the form of a data table to remove the developer from
individually modifying the database directly.

The present invention solves the above-described prob-
lems by providing a method for installing and registering
configuration data of COM component objects within a
registration database of a computing system, the method
comprising checking the COM component object to deter-
mine whether it contains a set of self-describing data. The
registration process performs the following: extracts the
self-describing data from the COM component, registers the
COM component using the extracted self-describing data by
storing registration data within the registration database and
deriving additional registration data from the extracted self-
describing data and storing the additional registration data
within the registration database.

Another aspect of the present invention is a computer-
readable medium having stored thereon a data structure
defining a self-describing COM component object to be read
by a system registrar module to install and register the
self-describing COM component within a registration datas-
tore. A first data field contains data representing a dynamic
link library. A second data field derived from the first data
field has a reserve word module. A third data field derived
from the second data field has one or more self-describing
component data elements. A fourth data field functions to
indicate the end of the self-describing COM component
object, wherein the one or more self-describing component
data elements are extracted by the system registrar module
to generate data stored within the registration datastore.

These and various other advantages and features of the
invention are pointed out with particularity in the claims
annexed hereto and form a part hereof. However, for a better
understanding of the invention and its advantages, reference
should be made to the drawings which form a further part
hereof, and to accompanying descriptive matter, in which
there are illustrated and described specific examples of
embodiments in accordance with the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates a client server system used in conjunc-
tion with an example embodiment of the present invention.

FIG. 2 illustrates an exemplary client server architecture
employing a COM+catalog in accordance with the present
invention.

FIG. 3 illustrates an exemplary computing system for
implementing the present invention comprising a general
purpose computing device in the form of a conventional
computer.

FIG. 4 illustrates operational modules used comprising an
object registration system according to an example embodi-
ment of the present invention.

FIG. 5 illustrates a self-describing COM object according
to one example embodiment of the present invention.

FIG. 6 illustrates a logical operation flow diagram for the
operations performed during the object registration process
according to one example embodiment of the present inven-
tion.

DETAILED DESCRIPTION

An embodiment of the present invention defines a new
software object registration system in which registration
data stored within a registration datastore is obtained

US 6,564,377 B1

3

directly from the object being installed. The new registration
system extracts the registration data from the software
object, stores it within the registration datastore, and imple-
ments service specific options which are not part of the
software object being installed. In one embodiment, the new
registration system replaces the current system in which
COM components in DLLs are installed and uninstalled
with a system registry utilizing two well defined entry
points, DIIRegisterServer and DIlUnregisterServer. The
developer is no longer responsible for providing executable
code within the DLL to modify the system registry to
perform the installation.

FIG. 1 is a pictorial representation of a suitable client-
server computing environment in which an embodiment of
the present invention may be implemented in both clients
and servers. In a computing network 100, client computer
systems 102, 104, 106 and 108 are connected to server
computer systems 110, 112, 114 and 116 by a network
connection 118. Additionally, client computer 120 is con-
nected to server computer 110 via a communication link,
such as the Internet 122 or a local area network. Since the
server 110 is connected via the network connection 118 to
the other servers 112, 114 and 116, the client computer 120
is also connected and may access information on the other
servers 112, 114 and 116, and clients 102, 104, 106, and 108,
as well as other computer systems coupled to the network
100.

The client computer systems 102, 104, 106, 108 and 120
operate using at least some of the information and processes
available on at least one of the servers 110, 112, 114 and 116
as well as other computer systems coupled to the network
100. Each client is preferably a complete, stand-alone com-
puter and offers the user a full range of power and features
for running applications. The clients 102, 104, 106 and 108,
however, may be quite different from the other clients as
long as they can communicate via the common interface
118.

The servers 110, 112, 114 and 116 are preferably
computers, minicomputers, or mainframes that provide tra-
ditional strengths offered by minicomputers and mainframes
in a time-sharing environment (e.g., data management,
information sharing between clients, and sophisticated net-
work administration and security features). The client and
server machines work together to accomplish the processing
of the executed application. Working together in this manner
increases the processing power and efficiency relating to
each independent computer system shown in FIG. 1.

Typically, a client portion or process of an application
executed in the distributed network 100 is optimized for user
interaction whereas a server portion or process provides the
centralized, multi-user functionality. However, each client
computer 102, 104, 106, 108 and 120 can perform functions
for other computers, including the clients and servers, thus
acting as a “server” for those other computer systems.
Similarly, each of the servers 110, 112, 114 and 116 can
perform functions and relay information to the other servers,
such that each server may act as a “client” requesting
information or services from another computer in particular
circumstances. Therefore, the term “client,” as used herein-
after refers to any computer system making a call or request
of another computer system and the term “server” is the
computer system servicing the request.

As part of the sophisticated network administration, each
computer is able to access configuration information related
to applications and resources available on the other com-
puters in the network 100. The configuration information is

10

15

20

25

40

45

50

55

60

65

4

located within memory or persistent storage on each com-
puter system, i.e., in a datastore. Additionally, each com-
puter system may have more than one datastore of configu-
ration information that must be accessed by the other
computer systems. Moreover, the different datastores may
each have different data types or formats. In order to access
configuration information from these many and various
computer datastores, a client, i.e., the system or process
making the request for information, communicates with a
“catalog” interface on the computer system.

FIG. 2 depicts an exemplary client/server architecture
employing COM+ catalogs in accordance with the present
invention (COM is an acronym for Component Object
Model). A COM+ Catalog is a virtualized database of
COM+ applications and their services, with runtime and
configuration-time abstraction layers for using and manipu-
lating configuration information. An embodiment of the
present invention, for example, may be employed in a
component-based programming model of a transaction pro-
cessing runtime environment for developing, deploying, and
managing high-performance, scaleable, and robust enter-
prise Internet and intranet server applications.

A“component” is software containing classes that may be
created and exposed as “objects” (i.e., self-contained pro-
grammed entities that consist of both data and functions to
manipulate the data) for use by another application. A
component can also use objects exposed by another appli-
cation. For example, a developer can create an application
using ActiveX components that can be updated and managed
easily as in-process DLLs (Dynamic Link Libraries). The
DLLs are then installed into the COM environment for
execution within the application. Components can be devel-
oped specifically for a developer’s single application, devel-
oped for use with multiple applications, or purchased from
a third party.

COM technology allows a piece of software to offer
services to another piece of software by making those
services available as “COM objects”. COM is a foundation
for an object-based system that focuses on reuse of inter-
faces. It is also an interface specification from which any
number of interfaces can be built. Each COM object is an
instance of a particular class and supports a number of
interfaces, generally two or more. Each interface includes
one or more methods, which are functions that can be called
by the objects’ clients.

COM+ technology is an extension of COM technology
that includes a new runtime library that provides a wide
range of new services, such as dynamic load balancing,
queued components, an in-memory database, and events.
COM+ technology maintains the basics of COM technology,
and existing COM-based applications can continue to work
unchanged in a COM+ environment.

An object implemented to comply with COM+ is referred
to as a “COM+ object”. A component that includes one or
more classes that may be instantiated as a COM+ object is
referred to as a “COM+ component”. Each COM+ compo-
nent has attributes, which can be set in a component (or type)
library. Attributes are a form of configuration data required
by many software components to execute correctly and
completely. An application that includes COM+ components
is referred to as a “COM+ application”. When a component
is made part of a COM+ application, its component (or type)
library is written into a COM+ catalog. When an object is
instantiated from that component, the attributes in the
COM+ catalog are examined to determine the object context
that contains properties for the object. Based on the object

US 6,564,377 B1

5

context, other services required by the object are provided.
In this manner, a developer can merely identify in the
attributes the additional functionality required by the object,
and based on the object’s attributes, the appropriate other
services that are available within the system, or the acces-
sible network, are executed to provide that functionality.

In FIG. 2, a client computer 200 is coupled via a network
to one or more remote computers (e.g., a computer 202 and
a server 204). Although the embodiments of the present
invention are illustrated and described herein relative to
multiple computer systems coupled by a computer network
or other communications connection, it is to be understood
that an embodiment of the present invention may be
employed in a stand-alone computer system to provide
access to configuration information in the system.

A client application 206 executes on the client computer
200 to access a server application 208 executing on the
server 204. For example, the server application 208 may
include a database application that receives a query from the
client application 206 and accesses a customer database (not
shown) for all customer data satisfying the query. During
operation, the server application 208 may require configu-
ration data recorded in a datastore (such as datastores 214 or
216). For example, a transaction server application can
determine the security level of a user according to a “role”
assigned to the user by an administrator or other means.
Accordingly, the transaction server application might query
a role definitions database to validate the user’s access to a
transaction database (not shown). In another example, the
server application 208 accesses configuration information to
verify that required services are available for its execution.

To obtain configuration information in the illustrated
embodiment, the server application 208 accesses a runtime
catalog 210 running on the server 204. The runtime catalog
210 causes one or more table object dispensers to create
catalog table objects (shown generally as table system 218)
providing the required configuration data in a table to the
server application 208. A “table object” includes an object
that provides a caller with access to underlying data, pre-
senting that data in virtual “table” format through a defined
table interface. A table object may also provide its own
functionality, read and write caching and the triggering of
external events, in addition to other features. The table data
is accessed by a caller (e.g., a catalog server, a runtime
catalog, or an overlaying logic table object) by way of a
table-oriented interface, preferably including table cursor
methods. In the exemplary embodiment, the runtime catalog
210 accesses configuration data in the datastores 214 and
216 through layers of abstraction provided by the table
system 218 (i.e., including logic table objects (LT), such as
logic table object 220, and data table objects (DTs), such as
data table object 222).

A globally unique database ID (identifier) called a “DID”
identifies each catalog database. A given DID guarantees a
minimum well-defined set of catalog tables, each table being
identified by and complying to the rules of a table ID (TID).
ADID is a datastore-independent identity, meaning that the
tables of that database can be distributed among multiple
datastores. Examples of datastores include the registry, type
libraries, SQL (structured query language) Servers, and the
NT Directory Service (NT DS), whereas examples of data-
bases include: server group databases, download databases,
and deployment databases.

A data table object, such as data table object 222, is a
datastore-dependent table object that exposes a table cursor
into a particular datastore. The table cursor provides a

10

15

25

35

40

45

50

55

60

65

6

well-defined table-oriented interface into the datastore while
hiding the location and format of the underlying datastore
itself. For example, a caller can use a table cursor to navigate
through the rows of a column in a table presented to the
caller by a table object.

Each data table object is bound to a particular datastore
accessible within the computer. For example, a data table
object may be bound to the registry to provide the registry
data in table form to a higher level (e.g., an overlaid logic
table object, catalog server object, or runtime catalog).
Another data table object may be bound to the NT Directory
Services to provide directory configuration data to a higher
level. As shown by data table objects 238 and 240, multiple
data table objects may be created for a single datastore (e.g.,
data table objects 238 and 240 are created by different logic
tables objects to provide access to the same datastore 242).

The data table object 222 populates one or more internal
caches with read or write data associated with the datastore
214. Queries to the datastore 214 are serviced by the cache
or caches through the data table object’s table interface.
Using at least one “update” method, data in the read cache
of data table object 222 may be refreshed from the datastore
214 and data in a write cache may be flushed to the datastore
214. Data table objects are described in more detail in U.S.
patent application Ser. No. 09/360,442, filed Jul. 26, 1999,
entitled “DATA TABLE OBJECT INTERFACE FOR
DATASTORE,” assigned to the assignee of the present
application, filed concurrently herewith and incorporated
herein by reference for all that it discloses and teaches.

A logic table object, such as logic table object 220,
presents domain-specific table data by logically merging or
consolidating table data from multiple data table and/or
logic table objects, supplementing table functionality, and/or
synthesizing data into the table. Logic table objects in a
COM+ Catalog environment are type-independent abstrac-
tion layers between a caller (such as the runtime catalog 210)
and one or more datastores (such as datastores 214 and 216)
containing configuration information. A logic table object
typically sits atop one or more data table objects and
introduces domain-specific rules and processes to the under-
lying data table objects, although other configurations of
table systems are possible.

More specifically, a logic table object can logically merge
or consolidate configuration data from multiple data table
and/or logic table objects into a single table based on
predetermined logic (e.g., according to type). Furthermore,
a logic table object can supplement data table object func-
tionality by intercepting interface calls from a client and
adding to or overriding the underlying table object function-
ality (e.g., adding validation or security). Additionally, a
logic table object can synthesize data that is not available
from the underlying datastores or tables and present the
synthesized data as part of the table. Logic table objects are
described in more detail in U.S. patent application Ser. No.
09/360,440, filed Jul. 26, 1999, entitled “A LOGIC TABLE
ABSTRACTION LAYER FOR ACCESSING CONFIGU-
RATION INFORMATION;,” assigned to the assignee of the
present application, filed concurrently herewith and incor-
porated herein by reference for all that it discloses and
teaches.

The foregoing discussion has described the COM+ Cata-
log environment as used at runtime by an application. An
alternate use of a COM+ Catalog occurs at configuration-
time and may employ one or more catalog server objects
(CS) and one or more client tables. During configuration, an
administration tool, such as Microsoft’s Component Ser-

US 6,564,377 B1

7

vices administration tool or COMAdmin Library, is used to
create and configure COM+ applications, install and export
existing COM+ applications, manage installed COM+
applications, and manage and configure services locally or
remotely. Accordingly, in addition to the illustrated
embodiments, an embodiment of the present invention may
be employed by a local administration tool managing an
application running on a remote computer system.

The exemplary administration tool 224 executes on the
client computer 200 in FIG. 2. An alternative administration
tool (such as administration tool 250) can execute on another
computer (such as server 204) to configure applications and
services executing in the computer. A catalog server object,
such as catalog server objects 226, 228, and 230, manages
configuration information on its computer. All administra-
tion requests to a computer, whether local or from another
computer, go to a catalog server object on that computer,
preferably through one or more abstraction layers, including
client table objects and logic table objects.

A client table object (CT) is analogous to a data table
object that binds to a particular local or remote catalog
server object instead of a datastore, presenting the configu-
ration information marshaled by a catalog server object in
table form to the caller, such as the administration tool 224.
The local catalog server object 226 manages configuration
data locally on the client computer 200, while the remote
catalog server object 228 service catalog requests from the
client table object 232 for configuration information on its
remote computer. “Remote” does not necessarily imply that
a remote computer geographically distant from a local
computer. Instead, remote merely indicates a cross-
computer boundary, which may be bridged by a data bus, a
network connection, or other connection means.

To access available catalog data in the illustrated exem-
plary embodiment, the administration tool 224 optionally
causes a logic table object 234 to be created, which in turn
causes client table objects 232 and 236 to be created for
accessing available catalog server objects 226, and 228. The
local catalog server object 226 and the remote catalog server
object 228 marshal the configuration information stored
within their corresponding computers by causing creation of
underlying table systems and transferring the data back to
the client table objects 232 and 236 for presentation as table
data to the logic table object 234, which logically merges the
configuration information and presents the configuration
information to the administration tool 224 in table format. In
the illustrated embodiment, multiple domain-specific logic
table objects (such as logic table object 234) can reside
between the client table objects 232 and 236, and the
administration tool 224. Alternatively, the administration
tool 224 may cause only a single client table object (with or
without overlaying logic table objects) to be created to
access a single catalog server object on a local or remote
computer.

With reference to FIG. 3, an exemplary computing system
for embodiments of the invention includes a general purpose
computing device in the form of a conventional computer
system 300, including a processor unit 302, a system
memory 304, and a system bus 306 that couples various
system components including the system memory 304 to the
processor unit 300. The system bus 306 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus and a local bus using
any of a variety of bus architectures. The system memory
includes read only memory (ROM) 308 and random access
memory (RAM) 310. A basic input/output system 312
(BIOS), which contains basic routines that help transfer

10

15

20

25

30

35

40

45

50

55

60

65

8

information between elements within the computer system
300, is stored in ROM 308.

The computer system 300 further includes a hard disk
drive 312 for reading from and writing to a hard disk, a
magnetic disk drive 314 for reading from or writing to a
removable magnetic disk 316, and an optical disk drive 318
for reading from or writing to a removable optical disk 319
such as a CD ROM, DVD, or other optical media. The hard
disk drive 312, magnetic disk drive 314, and optical disk
drive 318 are connected to the system bus 306 by a hard disk
drive interface 320, a magnetic disk drive interface 322, and
an optical drive interface 324, respectively. The drives and
their associated computer-readable media provide nonvola-
tile storage of computer readable instructions, data
structures, programs, and other data for the computer system
300.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 316, and a
removable optical disk 319, other types of computer-
readable media capable of storing data can be used in the
exemplary system. Examples of these other types of
computer-readable mediums that can be used in the exem-
plary operating environment include magnetic cassettes,
flash memory cards, digital video disks, Bernoulli
cartridges, random access memories (RAMs), and read only
memories (ROMs).

A number of program modules may be stored on the hard
disk, magnetic disk 316, optical disk 319, ROM 308 or
RAM 310, including an operating system 326, one or more
application programs 328, other program modules 330, and
program data 332. A user may enter commands and infor-
mation into the computer system 300 through input devices
such as a keyboard 334 and mouse 336 or other pointing
device. Examples of other input devices may include a
microphone, joystick, game pad, satellite dish, and scanner.
These and other input devices are often connected to the
processing unit 302 through a serial port interface 340 that
is coupled to the system bus 306. Nevertheless, these input
devices also may be connected by other interfaces, such as
a parallel port, game port, or a universal serial bus (USB).
A monitor 342 or other type of display device is also
connected to the system bus 306 via an interface, such as a
video adapter 344. In addition to the monitor 342, computer
systems typically include other peripheral output devices
(not shown), such as speakers and printers.

The computer system 300 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 346. The
remote computer 346 may be a computer system, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer system
300. The network connections include a local area network
(LAN) 348 and a wide area network (WAN) 350. Such
networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Inter-
net.

When used in a LAN networking environment, the com-
puter system 300 is connected to the local network 348
through a network interface or adapter 352. When used in a
WAN networking environment, the computer system 300
typically includes a modem 354 or other means for estab-
lishing communications over the wide area network 350,
such as the Internet. The modem 354, which may be internal
or external, is connected to the system bus 306 via the serial
port interface 340. In a networked environment, program

US 6,564,377 B1

9

modules depicted relative to the computer system 300, or
portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network
connections shown are exemplary, and other means of
establishing a communication link between the computers
may be used.

In an embodiment of the present invention, the computer
system 300 stores the configuration data and implementation
code providing the catalog infrastructure and disclosed and
claimed herein in accordance with the present invention. The
catalog infrastructure has without limitation one or more
datastores, catalog servers, runtime catalogs, server
applications, administration tools, dispensers, and wiring
databases. Specifically, one or more dispensers, preferably
including a table dispenser and a table object dispenser,
provide a table object to a caller providing location and type
independent access to configuration information stored in
one or more datastores.

FIG. 4 illustrates operational modules used in an object
registration system according to one preferred embodiment
of the present invention. The computing system 300 com-
prises one or more runtime modules 462, one or more
application install modules 461, and a Catalog module 463.
Runtime modules 462 comprise one or more Dynamic Link
Libraries (DLL) 481482 and other executable processes
that execute a set of computing instructions on the comput-
ing system 300 to perform any number of processing tasks.
Typically, these Runtime process modules 462 are the pro-
grams controlled by a user of the computing system 300 to
perform a set of desired operations. In a preferred
embodiment, the registration system installs and registers
COM component objects within a registration datastore. The
present invention may also be used to install and register
other software object within a registration datastore without
deviating from the spirit and scope of the present invention
as expressed within the claims attached hereto.

Component administration modules 461 have the set of
software processes that administer one or more software
components onto computing system 300. One such admin-
istrative function installing application programs that are
developed by various software developers. However, these
modules 461 may have any computational process, execut-
ing upon computing system 300, that creates and installs
components within the registration module for use by other
runtime modules 462 in the performance of their respective
functions.

The Catalog module 463 maintains the system component
registration database, RegDB datastore, for use by the
runtime modules 462 and the application install modules
461. The runtime modules 462 interact with a RegDB
runtime catalog module 471 to obtain runtime catalog infor-
mation from the RegDB datastore 473 when the runtime
modules 462 are interacting with other components within
computing system 300. The component administration mod-
ules 461 interact with the Registrar 472 when components,
and their corresponding registration data are being installed
within computing system 300. The operational flow of the
registrar module 463 is discussed in more detail with refer-
ence to FIG. 6 below.

FIG. § illustrates a self-describing COM object according
to one example embodiment of the present invention. The
self-describing COM object comprises a DLL file 501
generated by a software developer using various develop-
ment tools. Typically, source code written in a high-level
programming language such as C++ is passed through a
compiler and linked together to form the DLL file. The DLL

10

15

20

30

35

40

50

55

65

10

comprises a set of type libraries (TLB data) 502, a set of
COMLIb data (CLB data) 503, and other developer specific
items 510. These other developer specific items 510 may
have entry points defined within the DLL, when the object
is to be used in some manner 512, other executable code
modules used when the DLL is utilized 513, and pre-defined
data modules used by the DLL during its operation 514.

The TLB data comprises the type library data used in the
conventional manner within a WINDOWS operating system
environment. The type library data is used to define class and
interfaces for the DLL objects. This data will be added to the
system registry in a conventional manner.

The CLB data comprises the COM library attributes used
to control the operation of the COM components. COM+ 1.0
defines a set of attributes that are associated with a compiled
component. These attributes are intrinsically tied to a spe-
cific implementation of a component; they are essentially
“cast in stone” when the component is compiled and the
component is designed. COM+ self-describing components
are required to carry a type library that describes the
interfaces they implement.

For existing COM Components, the COM Explorer
allows developers and application integrators to specify
these attributes as external configuration information.
COM+ stores this information in the COM+ registration
database. Although these attributes are intrinsic attributes of
a component, they can be edited but are conceptually
immutable.

COM+ Components can provide some or all of these
attributes as part of the component itself.

Attributes can be declared at different levels:

Interface Definition: an abstract COM interface that is
defined with global scope. All classes that claim to
implement this interface need to adhere to the interface
contract. Attributes declared on an interface definition
are part of the interface contract and must thus be
satisfied by all classes that implement the interface.

Method Definition: a method in an interface definition.
Again all classes that implement a method in an inter-
face definition must conform to all attributes that are
declared on the method in the interface definition.

Class Implementation: a specific implementation or one
or more interface definitions. Attributes on this class
either express intrinsic characteristics of a class or are
to be applied to all interfaces and methods implemented
by this class.

Interface Implementation: a specific implementation of an
interface definition as implemented by a specific class.
Attributes on an interface implementation apply to a
specific implementation of an interface definition in a
specific class. Other implementations by different
classes of the same interface definition can have dif-
ferent attributes. Interface implementation attributes
typically do not change the client visible interface
contract.

Method Implementation: a specific implementation of a
method definition in an interface definition.

The syntax for COM+ 1.0 C++ attributes uses the fol-
lowing conventions that were established for all C++
attributes in Visual C++ 6.1:

attributes may have the form keyword only or keyword
(value)

a value may be a string (in quotes), a number, or a
comma-separated list of values enclosed in curly
braces.

US 6,564,377 B1

11

A “COM+ Module” in corresponds to a binary (DLL or
EXE), that contains the implementation of one or more
COM classes. A “COM Component” is defined as a COM+
module plus any additional files and resources that are
required to run classes in the component.

The ModuleID is an authored GUID that identifies a
specific kind of module. It is similar to the binary name, but
established a globally unique identifier to this module. The
ModulelD is used during registration to detect updates of
existing modules: in COM+ 1.0 the registration system
validates if a module with the same ModulelD is already
registers and refuses installation of the new module until the
old module is unregistered. Override flags allow the old
module to remain registered with COM semantics: classes
implemented by the previous module, but not implemented
by the new module are still visible. Tools should allow
developers to explicitly specify the ModuleID or guarantee
that the Module ID does not change once it is established,
unless the developer performs the equivalent of a module
rename operation. An example of how this attribute is set is
shown below.

uuid-attribute:

uuid = string-uuid OPTIONAL

The locale attribute (LCID) indicates for which this
module is authored. If the module has no localizable content
(error strings etc.), the LCID should be 0. Tools should allow
developers to explicitly specify the locale. If the developer
does not specify a locale, the LCID should be 0. Some tools
may be able to determine the locale of a module based on
other factors, in which case the default LCID can be set to
this locale without providing an explicit option to the
developer. An example of how this attribute is set is shown
below.

locale-attribute:
Icid = integer-constant OPTIONAL

CustomRegistration attribute is a flag that indicates if the
module requires additional registration beyond data-driven COM+
registration. If this flag is specified, the COM+ registration system will
look for a DlIRegisterServer entry point and invoke it if present. An
example of how this attribute is set is shown below. custom-registration-
attribute:

custom__reg [= TRUE] OPTIONAL, default = FALSE

The CustomRegistrar attribute is a GUID that indicates a
registrar component, which the COM+ registration system
will invoke in order to initiate the registration of the com-
ponent. This mechanism is primarily used for components
that carry COM+ meta-data but don’t provide actual binary
code themselves (COMTI tlbs). An example of how this
attribute is set is shown below.

registrar-attribute:

registrar = string-uuid OPTIONAL

Most fundamental class attributes are specified in the type
library, which is required for any COM+ 1.0 self-describing
component. These attributes include the set of interfaces
implemented by a class, the CLSID and the human-readable
class name. Additional attributes are described in the com-
ponent library. Methods are not part of the class attributes,

10

15

20

25

30

35

40

45

50

55

60

65

12

but described as interface attributes in the type library.
Again, additional interface attributes are described in the
component library. Currently COM+ does not define any
attributes associated with a specific interface implementa-
tion or a specific method implementation on a class.
CLSID attribute indicates the CLSID of the class. An
example of how this attribute is set is shown below.

uuid-attribute:
uuid (string-uuid) OPTIONAL, DEFAULT = compiler
generated, best effort to maintain constant

at recompilation

Name attributes is a human-readable name for the class.
Only used for UI purposes. An example of how this attribute
is set is shown below.

name-attribute:
class_name (string) OPTIONAL, DEFAULT = C++ class

name

Version attribute indicates a version number of the class
in <major>.<minor>.<build><subbuild>format. The version
number is stored as a 64 bit integer. Each element of the
version number is represented as a 16 bit signed integer. The
module version must be identical to the file version number,
if a file version number is specified. The module version is
authored. Tools should allow developers to explicitly specify
a module version. If the developer does not specify a module
version, tools should do a “best effort” to maintain increas-
ing version numbers across compilations (or releases of a
product), especially across multiple developer machines. An
example of how this attribute is set is shown below.

version-attribute:

class_version (string-uuid) OPTIONAL, DEFAULT =
compiler generated, “1.0.0.0”,
best effort to maintain
increasing version number

sequence across compilations.

Default ProgID attribute indicates the DefaultProgID for
the class. An example of how this attribute is set is shown
below.

progid-attribute:

progid (progid-string)
progid-string:

string-literal

OPTIONAL, DEFAUILT = class name

VIProgID attribute indicates the version independent
ProgID for the class. An example of how this attribute is set
is shown below.

version-independent-progid-attribute:

vi_progid (progid-string) OPTIONAL, DEFAULT: none

AlternateProgIDs attribute indicates one or more other
ProgIDs to be associated with this class. An example of how
this attribute is set is shown below.

US 6,564,377 B1

13

alternate-progids-attribute:
alternate__progid = { + progid-string } OPTIONAL,
DEFAULT:

noneFile 5

14

Short User Name attribute is a name to be used in OLE
user interface dialogs. An example of how this attribute is set
is shown below.

Extensions attribute indicates one or more file extensions
to be associated with this class. An example of how this

attribute is set is shown below. 10

fileextension-attribute:
file_ext (string-literal + [, string-literal]) OPTIONAL,

MULTI

J
wn

MIME Type(s) attributes indicates one or more MIME
types to be associated with this class. An example of how
this attribute is set is shown below.

mime-type-attribute:
mime (string-literal + [, string-literal]) OPTIONAL,

MULTI 25

Formats attributes has three different attributes: Sup-
ported, Converted From/To, Default. OLE formats sup-
ported by this class. Refer to the Platform SDK for more
information. An example of how this attribute is set is shown
below.

30

default-file-format-attribute:

default_ format (string-literal)
supported-format-attribute:

supported__formats

(string-literal + [, string-literal])
converts-from-format-attribute:

converts__from

(string-literal + [, string-literal])
converts-to-format-attribute:

converts__to

(string-literal + [, string-literal])

OPTIONAL 35

OPTIONAL, MULITI

OPTIONAL, MULIT

OPTIONAL, MULIT

Defaultlcon / IconResourcelD attribute is a default icon to
be used to represent this class for user interface purposes. An
example of how this attribute is set is shown below.

o
i

icon-attribute:
icon ([id =] icon-resource-id , [file= Jicon-
file)
icon-resource-id:
integer-constant
icon-file:
string-literal

OPTIONAL

55

ToolBoxBitmap / BitmapResourcelD attribute is a bitmap
to be used in tools to represent this class. Refer to the
Platform SDK for more information. An example of how

this attribute is set is shown below. 60

thumbnail-icon-attribute:
thumbnail _icon ([id =] icon-resource-id , OPTIONAL
[file =] icon-file) 65

short-display-name-attribute:
short__user_name (string-
literal)

OPTIONAL

Threading Model attribute indicates a threading model of
the class. Possible values correspond to the previously
defined threading model values “Apartment”, “Both”,
“Free” and “Main”. New in COM+ 1.0 is the “Neutral”
threading model, which indicates that instances of the class
can be used from any thread, but only one thread at a time
can ever be active for a given instance. In other words: the
class may not rely on thread local storage to keep state
between method invocations and does not need to synchro-
nize access to per-instance state. For more details refer to the
COM+ Apartments specification. If at registration time the
value “not specified” is found, the COM+ registration sys-
tem will default to “Both”. An example of how this attribute
is set is shown below.

threading-model-attribute:

threading (threading-model-value-strings) OPTIONAL,
DEFAUILT =
not__specified
threading-model-value-strings:

neutral

free

both

apartment

single

FixedInterfaceSet attribute is a Boolean flag indicating if
the type library of the component describes the full interface
set of the component. Future versions of COM+ will use this
information to optimize network roundtrips on creation and
on calls to [Unknown::Querylnterface.

Component Categories attribute is two lists of GUID
indicating the component categories implemented or
required by this class. An example of how this attribute is set
is shown below.

0 implements-cocat-attribute:

cocat__impl

(category-value + [, category-value])
category-value:

category-identifier
requires-cocat-attribute:

cocat__required

(category-value + [, category-value])
category-identifier:

guid-string

guid-struct

OPTIONAL,
MULTI-OCCUR

OPTIONAL,
MULTI-OCCUR

Transaction is an attribute indicating the class’s require-
ments on the transaction service. If the value is “not speci-
fied” the registration system will assume that the component
will ignore transactions in the context but will not interact
with any transaction protected resource (value “Transaction
Ignored”). An example of how this attribute is set is shown
below.

US 6,564,377 B1

15

transaction-attribute:

transaction (tx-attr-values + [, vote-value]) OPTIONAL,
DEFAULT =
not__specified
tx-attr-values:

not__supported

supported

required

requires__new

Votes in Transaction Attribute is a boolean flag indicating
if the class gets to decide whether or not to commit a
transaction. This is used for optimization at runtime. An
example of how this attribute is set is shown below.

vote-value:
no_vote OPTIONAL, DEFAULT = votes in transaction,
can not be specified if Tx = not_ supported

or no Tx attribute is specified

Synchronization attribute indicates if the class supports or
requires synchronization. An example of how this attribute
is set is shown below.

synchronization-attribute:

synchronization (sync-attr-values) OPTIONAL,
DEFAUILT =
not__specified
sync-attr-values:

not__supported

supported

required

requires__new

Load Balancing Attribute is a flag indicating if the class
can be used as part of a load-balancing cluster. This flag
implies that the class does not rely on any machine specific
state between creations, and that it does not share any state
with other classes in the same module, process or machine,
which is not accessible to other instances of these classes.
Also, load balancing requires that Response Stats be
enabled. Poolable attribute is a flag indicating if the class can
be safely used with the COM+ object pooling feature. An
example of how this attribute is set is shown below.

load-balancing-attribute:

load_balancing (lb-attr-values) ~ OPTIONAL, DEFAULT =
not__specified
Ib-attr-values:

not__supported

supported

Poolable attribute is a flag indicating if the class can be
safely used with the COM+ object pooling feature. An
example of how this attribute is set is shown below.

pooling-attribute:

object_pooling (op-attr-values) ~ OPTIONAL, DEFAULT =
not__specified
op-attr-values:

not__supported

supported

10

20

25

30

35

40

50

55

60

65

16

JITActivation attribute is a flag indicating if the class can
be safely used with the COM+ object just-in-time activation
feature. An example of how this attribute is set is shown
below.

JT-attribute:

jit_activation (jit-attr-values) OPTIONAL, DEFAULT =
not__specified
jit-attr-values:

not_supported

supported

Role Access Check attribute is utilized to indicate that a
class, interface or method is to be configured to allow access
to members of a specified role. A particular class, interface
or method can specify multiple roles. The specified set of
roles is a hint to the application developer and can be
overridden at application development time. An example of
how this attribute is set is shown below.

allow-access-attribute:

allow__access (+ role-name) OPTIONAL,
MULTI-OCCUR,
DEFAULT = don’t add role
access
role-name:

string-literal

Role Access Checks can also be specified as a interface
implementation attribute using the following syntax:

allow-interface-access-attribute:

allow__interface__access (interface-id , OPTIONAL,
+ role-name) MULTI-
OCCUR

Role Access Checks can also be specified as a method
implementation attribute using the above “allow__access”
syntax.

Role Reference attribute is utilized to Indicates that the
implementation of a class performs programmatic checks for
a specific role and applies different semantic behavior
depending on the role membership of the caller. At the time
a component is installed into an application, the referenced
roles will be added to the target application. The application
developer should not be able to remove these roles, but can
choose to not assign any users to the roles. Role References
can only be applied to classes, not individual interfaces or
methods. An example of how this attribute is set is shown
below.

role-reference-attribute:

role_reference (* role-name) OPTIONAL,
MULTI_OCCUR,
DEFAULT =

don’t add role reference

Most fundamental interface definition attributes are
described in the type library. Additional attributes are cap-
tured in the component library. IID attribute is an Interface
ID of the interface. An example of how this attribute is set
is shown below.

US 6,564,377 B1

17

uuid-attribute:

uuid (string-uuid) REQUIRED

Queueable attribute is a flag indicating if this interface can
be invoked over deferred transports (Queued Components).
The interface may not have any out parameters, including
status codes as the return value. An example of how this
attribute is set is shown below.

queuable-attribute:

queuable (queue-attr-values) OPTIONAL, DEFAULT =
supported if no method in
the interface has an out
parameters. Can not specify
supported if any method in the
interface has an
out parameter.
queue-attr-values:

not__supported

supported

ProxyStub CLSID is utilized to indicate that the interface
is to be marshaled via a custom or MIDL generated proxy/
stub as opposed to typelibrary-marshaled. The GUID indi-
cated the proxy/stub class id to be registered for marshaling
the interface. An example of how this attribute is set is
shown below.

proxystub-attribute:

proxy__stub (string-uuid) OPTIONAL

Auto Done Attribute is utilized to indicate that a class can
be safely deactivated after a call to this method. An example
of how this attribute is set is shown below.

auto-done-attribute:
auto__done OPTIONAL, can only be specified if JIT

Activation = supported.

FIG. 6 illustrates a logical operation flow diagram for the
operations performed during the object registration process
according to one example embodiment of the present inven-
tion. The object registration process begins with the execu-
tion of an Install Operation 601. The Install Operation 601
calls the Registrar module 472 to perform the installation
and registration of one or more DLL files. All further
operations occur under the control of the Registrar module
472.

The Registrar module 472 begins by performing a Check
Operation 602 to determine whether the DLL being installed
comprises a self-describing component. The Check opera-
tion 602 understands the structure of the DLL and may read
the contents of the file to determine if the CLB data is
present within the DLL file. Typically, a pointer to the CLB
data is stored within the DLL file in a particular location.
This pointer may be located within a set of system reserve
words. The CLB pointer may be located at a particular offset
from the beginning of these reserve words within a Reserve
Block module 504. No other item will be stored within this
particular location within the Reserve Block module 504. If
the pointer is found within this location, the Registrar

10

15

20

25

30

35

40

45

50

55

60

65

18

module 472 may identify the DLL as self-describing. If the
pointer is not present and the reserve word contains an
invalid value, the Registrar module 472 may determine that
the component is not self-describing.

If the Check operation 602 determines that the DLL
component 501 is not self-describing, the registrar module
472 executes a DLL install operation 603. This operation
installs the DLL 501 in the conventional manner by utilizing
the well-defined DLL entry point, DIlIRegisterServer. As
described above, the DLL 501 itself must contain executable
code to modify the registry to perform the installation and
registration process.

Once the DLL install operation 603 completes, the Reg-
istrar module 472 performs a TLB operation 604. If the
Check operation 602 determines that the DLL component
501 is self-describing, the Registrar module 472 will imme-
diately perform the TLB operation 604. The TLB operation
604 extracts any type library data present within the DLL
component 501 and registers the data within the system
registry in the conventional manner.

The Registrar module next performs a Test operation 605
to again determine if the DLL component 501 is a self-
describing component. This test is the same operation per-
formed above in the Check operation 602. The Test opera-
tion 605 may perform the operation as described above or
may be passed an indication of the outcome from the Check
operation 602. If the DLL component 501 is not self-
describing, the Registrar module 472 branches to the end of
the processing 609 and terminates operation. If the DLL
component 501 is self-describing, the Registrar module 472
installs the DLL module and stores the registration data
within the RegDB datastore 473.

The remaining installation and registration process has a
sequence of three operations: a Read operation 606, a Write
operation 607, and a Derive operation 608. In the Read
operation 606, the Registrar module reads the self describing
data from a data table object 474. The data table object
presents the self-describing data 520 in a tabular form to the
registrar. The registrar invokes the data table object 474
which cracks open the DLL component 501 and extracts the
Self-describing data 520 from within the CLB data 503 and
presents it in a tabular form. As described above, the data
table object 474 locates and extracts the Self-describing data
520 data using a system interface IMetaDatalmport.

Once the Self-describing data 520 has been extracted, the
Write operation 607 stores the Self-describing data 520 in an
appropriate format into the RegDB datastore 473 through a
data table object 474. The use of the data table object 474
provides storage format and storage location independence
for the registration data. The data table object 474 presents
this configuration data to processing modules, like the
Registrar module 474, in tabular form as a data level table.
As such, the storage format and storage location for this data
may be changed as long the data table object 474 under-
stands the corresponding format and location. Additionally,
each process module, like the Registrar module 474, may be
presented with its own data table object 474 optimized to
satisfy the particular requirements of the module.

For example, the data table object 474 used by the
Registrar module 472 requires the data table object 474
support both read and write operations to the RegDB datas-
tore 473. In contrast, the RegDB runtime catalog module
471 only requires that its data table object 475 support
read-only operations. Thus, these table objects may present
the same data level table of registration data to the corre-
sponding modules, but they do so in different ways that may
be optimized to increase the performance of the various
modules.

US 6,564,377 B1

19

The installation and registration process concludes with
the performance of the Derive operation 608. In this opera-
tion, the Registrar module 472 derives any additional reg-
istration information needed to install and registrar the DLL
module 501 from the Self-describing data 520. This addi-
tional information may be needed to interface the DLL
module 501 with other system supplied modules to provide
various supported functions.

For example, COM modules support services such as
transactions and queues. These particular services are sup-
ported by system provided modules within a COM sup-
ported system. When the Self-describing data 520 indicates
that the DLL module 501 contains attributes that use these
services, the Derive operation 608 recognizes the need to
interface this DLL module 501 being installed with the
system modules that support these services. The Derive
operation 608 will include the necessary information within
the RegDB datastore 473 to provide any interceptors and
custom activators needed to link the DLL module 501 with
the system modules. Once the Derive operation 608 com-
pletes, the Registrar module 472 has completed installing
and registering the self-described DLL module 501 and
processing terminates 609.

The foregoing description of exemplary embodiments of
the invention has been presented for the purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. It is intended that the scope of the invention
be limited not with this detailed description, but rather by the
claims appended hereto.

What is claimed is:

1. A method for installing and registering a software
objects within a registration datastore of a computing
system, the method comprising:

checking the software object to determine whether it

contains a set of self-describing data;

if the software contains the set of self-describing data,

perform the following:

extracting the self-describing data from the software
object;

registering the software object using the extracted
self-describing data by storing registration data
within the registration datastore; and

deriving additional registration data using the extracted
self-describing data and storing the additional regis-
tration data within the registration datastore.

2. The method according to claim 1, wherein the method
further comprises:

extracting type library data comprises object class and

interface information and storing the type library data
within a system registry.

3. The method according to claim 2, wherein the method
further comprises:

if the software object does not contains the set of self-

describing data, installing and registering the software
object by calling a well-defined DIIRegisterServer
entry point within the software object.

4. The method according to claim 3, wherein the storing
registration data within the registration datastore comprises:

retrieving the contents of the registration datastore into a

data table;

modifying the data table; and

updating the registration datastore with the modified data

table.

5. The method according to claim 4, wherein the checking
the software object to determine whether it contains a set of

10

15

20

25

35

40

45

50

55

60

65

20

self-describing data uses a reserve word module within the
software object to locate the set of self-describing data.

6. The method according to claim 5, wherein the extract-
ing the self-describing data from the software object uses a
reserve word module within the software object to locate the
set of self-describing data.

7. The method according to claim 6, wherein the software
object comprises a COM component object.

8. A method for installing and registering a COM com-
ponent objects within a registration datastore of a computing
system, the method comprising:

extracting type library data comprises object class and

interface information and storing the type library data
within a system registry; and

checking the COM component object to determine

whether it contains a set of self-describing data;

if the COM component does not contains the set of

self-describing data, installing and registering the COM
component by calling a well-defined DIIRegisterServer
entry point within the COM component;

if the COM component contains the set of self-describing

data, perform the following:

extracting the self-describing data from the COM com-
ponent;

registering the COM component using the extracted
self-describing data by storing registration data
within the registration datastore; and

deriving additional registration data using the extracted

self-describing data and storing the additional registra-
tion data within the registration datastore; wherein
storing registration data within the registration datas-
tore comprises:
retrieving the contents of the registration datastore
into a data table;
modifying the data table; and
updating the registration datastore with the modified
data table;
checking the COM component object to determine
whether it contains a set of self-describing data uses
a reserve word module within the COM component
to locate the set of self-describing data; and
the extracting the self-describing data from the COM
component uses the reserve word module within the
COM component to locate the set of self-describing
data.

9. A computer-readable medium having computer-
executable instructions for the method recited in claim 1.

10. A computer-readable medium having computer-
executable instructions for the method recited in claim 8.

11. A computer data signal embodied in a carrier wave
readable by a computing system and encoding a computer
program of instructions for executing a computer process
performing the method recited in claim 1.

12. A computer data signal embodied in a carrier wave
readable by a computing system and encoding a computer
program of instructions for executing a computer process
performing the method recited in claim 8.

13. A computer-readable medium having stored thereon a
data structure defining a self-describing a software object to
be read by a system registrar module to install and register
the self-describing software object within a registration
datastore, comprising:

a first data field containing data representing a dynamic

link library;

a second data field derived from the first data field

comprising a reserve word module;

US 6,564,377 B1

21

a third data field derived from the second data field
comprising one or more self-describing component
data elements; and

a fourth data field functioning to indicate the end of each
self-describing software object;

wherein each self-describing component data elements
are extracted by the system registrar module to generate
data stored within the registration datastore.

14. The computer readable medium according to claim
13, wherein each self-describing component data elements
comprises:

a classID attribute containing a globally unique identified

for identifying the class; and

a classVersion attribute containing a 64 bit version num-

ber for the class.

15. The computer readable medium according to claim
14, wherein each self-describing component data elements
further comprises:

a SyncronizationServices attribute for indicating the syn-

chronization behavior for the software object;

a LoadBalancingServices attribute for indicating the load
balancing behavior for the software object;

a PoolableServices attribute for indicating the pooling
feature behavior for the software object; and

a JIT__activation attribute for indicating the just in time
activation behavior for the software object.
16. The computer readable medium according to claim
15, wherein each self-describing component data elements
further comprises:

a RoleAccessCheck attribute for indicating members of a
specific role permitted access to the software object;
and

a RoleReference attribute for performing programmatic
checks for a specific role and applying different seman-
tic behavior based upon the role membership of a caller
to the software object.

17. The computer readable medium according to claim

16, wherein:

the software object comprises a COM component object;
and

each self-describing component data elements further
comprises:

an InterfacelD attribute for indicating the identity of an
interface to the COM component;

a QueueServices attribute for indicating an interface to
the COM component may be invoked over deferred
transports;

a ProxyStubClassID attribute for indicating whether an
interface to the COM component may be marshalled
utilizing a custom proxy stub; and

an AutoDone attribute for whether a class within the
COM component may be safely deactivated after
completion of a call to the COM component.

18. A computer data signal embodied in a carrier wave
readable by a computing system and encoding a data struc-
ture defining a self-describing software object to be read by

15

20

25

30

35

45

50

22

a system registrar module to install and register the self-
describing software object within a registration datastore,
comprising:
a first data field containing data representing a dynamic
link library;

a second data field derived from the first data field
comprising a reserve word module;

a third data field derived from the second data field
comprising one or more self-describing component
data elements; and

a fourth data field functioning to indicate the end of the
self-describing software object; wherein
the one or more self-describing component data ele-

ments are extracted by the system registrar module to

generate data stored within the registration datastore;

and

the one or more self-describing component data ele-

ments comprises:

a classID attribute containing a globally unique
identified for identifying the class;

a classVersion attribute containing a 64 bit version
number for the class;

a SyncronizationServices attribute for indicating the
synchronization behavior for the software object;

a LoadBalancingServices attribute for indicating the
load balancing behavior for the software object;

a PoolableServices attribute for indicating the pool-
ing feature behavior for the software object;

a JIT activation attribute for indicating the just in
time activation behavior for the software object;

a RoleAccessCheck attribute for indicating members
of a specific role permitted access to the software
object; and

a RoleReference attribute for performing program-
matic checks for a specific role and applying
different semantic behavior based upon the role
membership of a caller to the software object.

19. The computer data signal according to claim 18,

wherein:

the software object comprises a COM component object;
and

the one or more self-describing component data elements
further comprises:

an InterfacelD attribute for indicating the identity of an
interface to the COM component;

a QueueServices attribute for indicating an interface to the
COM component may be invoked over deferred trans-
ports;

a ProxyStubClassID attribute for indicating whether an
interface to the COM component may be marshalled
utilizing a custom proxy stub; and

an AutoDone attribute for whether a class within the
COM component may be safely deactivated after
completion of a call to the COM component.

#* * #* * #*

	1: Bibliography
	2: Drawings
	3: Drawings
	4: Drawings
	5: Drawings
	6: Drawings
	7: Drawings
	8: Description
	9: Description
	10: Description
	11: Description
	12: Description
	13: Description
	14: Description
	15: Description
	16: Description
	17: Claims
	18: Claims

